A family of thermostable fungal cellulases created by structure-guided recombination.

نویسندگان

  • Pete Heinzelman
  • Christopher D Snow
  • Indira Wu
  • Catherine Nguyen
  • Alan Villalobos
  • Sridhar Govindarajan
  • Jeremy Minshull
  • Frances H Arnold
چکیده

SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 degrees C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 degrees C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 degrees C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods.

Building on our previous efforts to generate thermostable chimeric fungal cellobiohydrolase I (CBH I, also known as Cel7A) cellulases by structure-guided recombination, we used FoldX and a 'consensus' sequence approach to identify individual mutations present in the five homologous parent CBH I enzymes which further stabilize the chimeras. Using the FoldX force field, we calculated the effect o...

متن کامل

Exploring the Mechanism Responsible for Cellulase Thermostability by Structure-Guided Recombination.

Cellulases from Bacillus and Geobacillus bacteria are potentially useful in the biofuel and animal feed industries. One of the unique characteristics of these enzymes is that they are usually quite thermostable. We previously identified a cellulase, GsCelA, from thermophilic Geobacillus sp. 70PC53, which is much more thermostable than its Bacillus homolog, BsCel5A. Thus, these two cellulases pr...

متن کامل

Enhancement of cellulosome-mediated deconstruction of cellulose by improving enzyme thermostability

BACKGROUND The concerted action of three complementary cellulases from Clostridium thermocellum, engineered to be stable at elevated temperatures, was examined on a cellulosic substrate and compared to that of the wild-type enzymes. Exoglucanase Cel48S and endoglucanase Cel8A, both key elements of the natural cellulosome from this bacterium, were engineered previously for increased thermostabil...

متن کامل

SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability.

A quantitative linear model accurately (R(2) = 0.88) describes the thermostabilities of 54 characterized members of a family of fungal cellobiohydrolase class II (CBH II) cellulase chimeras made by SCHEMA recombination of three fungal enzymes, demonstrating that the contributions of SCHEMA sequence blocks to stability are predominantly additive. Thirty-one of 31 predicted thermostable CBH II ch...

متن کامل

Engineered thermostable fungal cellulases exhibit efficient synergistic cellulose hydrolysis at elevated temperatures.

A major obstacle to using widely available and low-cost lignocellulosic feedstocks to produce renewable fuels and chemicals is the high cost and low efficiency of the enzyme mixtures used to hydrolyze cellulose to fermentable sugars. One possible solution entails engineering current cellulases to function efficiently at elevated temperatures in order to boost reaction rates and exploit several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 14  شماره 

صفحات  -

تاریخ انتشار 2009